Staying ahead of upcoming restrictive drone regulations

drone

How can drone developers avoid being shut down by an accident?

With the gradual increase in the use of commercial and consumer drones, we constantly hear about near-collisions and other incidents. Some of these incidents might be over-dramatized by the media or by whoever reported them, yet the overall risk is rising. In the UK,multiple close encounters of the drone kind have been reported recently, with some very close calls between small drones and large passenger jets. In a recent incident in LA, a helicopter was reportedly struck by what was probably a small drone, fracturing the windshield. Not only aircraft and their passengers are at risk – people on the ground can also get injured. In another incident, an innocent hobbyist’s drone clipped a tree and dropped towards the ground, causing serious eye injury to his friend’s son, a young toddler. In the Netherlands a small drone lost contact with its operator and flew away, gradually running out of battery, then eventually descended onto a busy highway. Although the incident did not result in any damage to people or equipment, it did damage the local drone industry, which was shortly thereafter subjected to extensive flight restrictions. In Vancouver, there have been a number of cases of drones reported near the final approach to YVR and at least a couple of cases when commercial drones crashed and caused minor damage to parked vehicles. YVR airport has recently launched a drone awareness program.

Small drones can help reduce emissions (by replacing larger aircraft for similar operation), save lives through search & rescue operations, replace manned aircraft in dangerous operations, aid in “precision agriculture” that helps produce better yields, help inspect smoke stacks and wind-turbines without the need for downtime, and many other possible applications. When designed and used appropriately, the utility of drones is enormous, and this utility is the essence of why the commercial drone industry has been growing so quickly. Drones can do a lot to advance society.

One of the major barriers to the full public acceptance of drones is that they pose safety concerns to the public. Typical root causes of incidents to date include:

  • Irresponsible operation. Not all drone operators are as experienced, cautious, or responsible as the best commercial operators. The fact that consumer drones are relatively inexpensive makes it possible to start a small business using drones at relatively low (apparent) risk, or for a user to purchase a unit for hobby purposes, with little experience or knowledge. Remote control airplane hobbyists are generally responsible, knowledgeable, and have the required skill to safely fly their models; however, modern drones and particularly the multirotor type are easy to operate anywhere, even for the uninformed or inexperienced operator. Owning and operating a drone safely, requires knowledge, skill, and responsibility. One can begin by taking not-too-costly drone courses, either online or in class.
  • Technical problems associated with performance, reliability, or other shortfalls, for example:
    • Drone flyaway, where a drone suddenly flies away due to a broken communication link with the remote control unit (because of remote control failure or radio interference), a software glitch, operator error, design issues, etc.
    • Engine failure. A variety of solutions have been developed that allow a multirotor drone to recover from engine failure, while many of the products currently on the market do not have such recovery capability.   With fixed wing drones, loss of an engine is generally easier to recover from.
    • Loss of control, for example because of interference confusing the unit’s compass, GPS, or inertial sensors, or due to incorrect orientation or calibration of the unit’s compass (“toilet bowl effect”).
    • Power failure due to battery failure or wiring issues.

Drone technology improvements are enabling more capable and lower cost drones, increasing the numbers of drones and the overall safety risk. Improvements include enabling technologies such as lithium polymer batteries, flight control and ground control station software, small-size (low-weight) cameras and other sensors, and small flight controllers based on solid state electronic components.   There are also numerous technologies and techniques that enhance the reliable operation of drones, such as monitoring battery hours/cycles/performance, setting parameters properly, performing calibration, etc. Flight control has become more affordable with software-enabled augmentation of lower-accuracy inertial sensors.

There is significant opportunity for improving the safety and reliability of small drones to the necessary level, by developing more robust system architectures, improving operational procedures and operator qualifications, technology innovation, improved regulation, and by following more rigorous techniques in the design and manufacturing of these products. Most drones do not fully employ the proven and robust approaches used in the manned aircraft industry in the areas of design, testing, regulation, maintenance, inspection, and other best practices. While some of these approaches are more rigorous and expensive than necessary, and can be relaxed somewhat to be suitable for the drone industry, there is high value in many of these approaches that can lead to both adequate safety and risk profiles, and low enough cost and weight.

Regulations are developing worldwide, and all in the direction of more restrictive or higher required capability and proof. In some countries, there is a move towards restricting the operation of drones near built-up areas and air-fields to “compliant systems” only, which is a challenge for all drone developers, and will likely leave some of the lower-cost manufacturers behind. Manufacturers who are proactive in economically developing reliable, safer, compliant products will be the most successful in the marketplace, as they will be able to operate where others cannot and will avoid reliability issues in the marketplace. Even consumer drones are complex products, and their safe operation an even more complex challenge. One major incident caused by technical failure, or by a design that does not prevent user error, could result in a damaging effect on the national or global drone market.

A systems approach to this complex issue that combines proactive strategy, careful risk analysis, economically innovative solutions, and best practices tailored to the drone industry will enable leading drone developers to get ahead on this issue. Such effort may seem costly, but is by far outweighed by the potential repercussions of failure to prevent an incident, even if it has been caused by “operator error”. It you think safety is too costly, try an accident!